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Abstract. We study the long-range effective drift and diffusivity of a particle in a random
medium moving subject to a given molecular diffusivity and a local drift. The local drift models
the effect of a random electrostatic field on a neutral but polarizable molecule. Although the
electrostatic field is assumed to obey Gaussian statistics the induced statistics of the drift velocity
field are non-Gaussian.

We show that a four-loop perturbation theory calculation of the effective diffusivity is in
rather good agreement with the outcome of a numerical simulation for a reasonable range of the
disorder parameter. We also measure the effective drift in our simulation and confirm the validity
of the ‘Einstein relation’ that expresses the equality of the renormalization factors, induced by
the random medium, for the effective drift and effective diffusivity, relative to their molecular
values. The Einstein relation has previously only been confirmed for Gaussian random drift
fields. The simulation result, for our non-Gaussian drift model, is consistent with a previous
theoretical analysis showing the Einstein relation should remain true, independently of the precise
character of the statistics of the drift velocity field.

1. Introduction

The advective diffusion of passive scalar fields in random environments has been extensively
studied by both analytical and numerical techniques, with particular emphasis on the
computation of effective parameters for a diffusion process that combines molecular
diffusion with a drift term that depends linearly on the gradient of a random scalar field
[1–10].

The problem is well studied and understood in the case of transport by a gradient
velocity field which exhibitsGaussianstatistics. In isotropic systems a renormalization
group approach can be shown to give exact results in one and two dimensions [1–3].
Somewhat surprisingly the same approach works extremely well for the isotropic problem
in three dimensions [4–7], though the situation is less clear in the absence of isotropy [8, 9].

One ingredient in the success of the renormalization group method is that, at each
stage of the calculation, it respects the Einstein relation that guarantees the equality of the
renormalization factors of the effective diffusivity,κe, and drift,λe, parameters relative to
their molecular values,κ0 andλ0 respectively. That is

κe

κ0
= λe

λ0
. (1)

This result does not hold in the, somewhat arbitrary, Hartree–Fock resummation procedure
which turns out to be even less accurate than simple low-order perturbation theory which
also breaks down for strong disorder.
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It turns out that the Einstein relation holds in a wide range of circumstances including
ones where the diffusivity and drift coefficient have non-trivial tensorial structure [10]. The
only requirement is that the two tensors are linearly dependent. Thus if at the molecular
level we haveλ0 ij = τκ0 ij then we will find for the macroscopic effective parameters
that λe ij = τκe ij . The isotropic situation is an example of this. The reason that the
proportionality factor survives renormalization can be traced back to the existence of a finite
sample equilibrium distribution with a vanishing microcurrent. In equilibrium statistical
mechanics this vanishing is guaranteed which explains the emergence of the Einstein relation
in this context. In the quenched models with which we are concerned the Einstein relation
is not guaranteed except in the special but important circumstances indicated above. Given
these conditions of proportionality of the molecular tensors however, the Einstein relation
can be shown to hold sample by sample. It follows that the relation will holdindependentof
the precise nature of the statistics of the gradient velocity field. This theoretical prediction
[10] lends considerable interest to the results of the numerical simulation of the physically
motivated model that we study in this paper, in which the gradient velocity field does not
have Gaussian statistics.

A physical realization of theGaussiancase is the diffusion of an ion in a sea of fixed,
disordered charges that give rise to an electrostatic potential. Such a situation can be
created by embedding fixed ions in the rather accommodating structure of a zeolite matrix.
It is not unreasonable to treat the resulting electrostatic field as having Gaussian statistics
at lengthscales somewhat larger than the molecular level but very short compared with
macroscopic scales. A related problem, particularly relevant to applications in chemical
processes, concerns the diffusion of aneutral molecule in such a medium. The case of the
diffusion of benzene in zeolites with random ionic inclusions has been studied experimentally
and has important technological applications [11]. In this situation the force on the molecule
arises because of the interaction of its induced dipole moment with the electrostatic field
produced by the included ions. The result is a gradient velocity field withnon-Gaussian
statistics. For simplicity we take it for granted that all tensorial effects are absent.

We assume that the dipole momentPi of the diffusing particle is proportional to the
ambient electric fieldEi thus

Pi = µEi. (2)

The force on the molecule is

Fi = Pj∂jEi (3)

and since for an electrostatic field∂jEi = ∂iEj , it follows that

Fi = µEj∂iEj = 1
2µ∂iE

2
j . (4)

If we introduce the electrostatic potentialφ(x) then the force on the molecule becomes

Fi = 1
2µ∂i(∇φ(x))2. (5)

If we assume that the drift of the molecule is given by

ui(x) = νFi (6)

then, absorbing all constants into an overall parameterλ0, we have

ui(x) = 1
2λ0∂i(∇φ(x))2. (7)

It is still reasonable to model the statistical properties of the electrostatic potentialφ(x) by
a Gaussian field. However, because of the quadratic relationship betweenui(x) andφ(x)
the statistics of the drift velocity arenot Gaussian in this model. The higher cumulants of
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the velocity field beyond the second do not vanish. Indeed it is very clear that the third- and
other odd-order cumulants exist. This means that the problem is not symmetrical under the
changeλ0→−λ0. For this reason we explore both positive and negative values ofλ0 even
though the physical derivation of the model suggests thatλ0 > 0. For the purposes of the
simulation we take the opportunity to absorb the normalization ofφ(x) into the definition
of λ0 and require

〈(φ(x))2〉 = 1. (8)

The problem we address then, is the evaluation of the long-range effective parameters in
terms of the (non-Gaussian) statistical properties of the random flow. Such a model presents
its own new technical difficulties. Calculational schemes such as self-consistent perturbation
theory or the renormalization group (RG), which proved so successful in Gaussian problems,
turn out to be hard to apply to this particular problem. The barriers to a straightforward
application of these more sophisticated perturbation methods arise mainly because of the
increased complexity of the vertex structure at low wavenumber that is quickly revealed
by perturbation theory. In addition the lowest-order correction to the propagator begins at
two loops rather than one loop as in the Gaussian case. In this paper we confine ourselves
to computing the standard perturbation expansion for the effective diffusivity to four-loop
order. As will become clear the results are consistent with the outcome of our numerical
simulation of the model over a significant range of values for the drift parameter.

2. Perturbation theory

The diffusion equation in which we are interested has the form

∂P (x, t)

∂t
= ∇ · (κ0∇P(x, t)− u(x)P (x, t)). (9)

Here,P(x, t) is the probability density of a particle moving according to the equation

ẋ = u(x)+w(t) (10)

wherew(t) is a white noise term that satisfies

〈wi(t)〉 = 0 and 〈wi(t)wj (t ′)〉 = 2κ0δij δ(t − t ′). (11)

The flow field,u(x), is taken to be time independent and is the gradient of a scalar field

u(x) = λ0∇ψ(x) (12)

but, because the flow originates in the interaction of the induced dipole moment of the
diffusing particle with the electrostatic field,ψ(x) does not exhibit Gaussian statistics. In
fact, as indicated above, we have

ψ(x) = 1
2(∇φ(x))2 (13)

whereφ(x) is a homogeneous Gaussian random field characterized by the disorder averages

〈φ(x)〉 = 0 and 〈φ(x)φ(y)〉 = 1(x− y). (14)

For simplicity we take the disorder to be isotropic, that is,1 = 1(|x|).
The perturbative approach to solving equation (9) is well known [1–3, 6, 12, 14, 15] and

we only summarize here the necessary results. Since we are interested in the effective
parameters governing the evolution of the distributionP(x, t), we study the related static
Green function,G(x), which satisfies

κ0∇2G(x)−∇·(u(x)G(x)) = −δ(x). (15)
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Figure 1. Vertex diagram.

A perturbation series in the couplingλ0 for G̃(k) can be generated by iterating the formal
solution to equation (15) in Fourier space:

G̃(k) = 1

κ0k2
− λ0

κ0k2

∫
d3q

(2π)3
d3p

(2π)3
G̃(k − q − p)φ̃(q)φ̃(p)q·p k·(q + p)

2
. (16)

The Green function averaged over the velocity ensemble,〈G̃(k)〉, can be written as

〈G̃(k)〉 = 1

κ0k2−∑(k) (17)

where the averaging over the velocity ensemble is done using Wick’s theorem to give a
diagrammatic expansion and

∑
(k) is the summation of one-particle irreducible diagrams.

The expected asymptotic behaviour of the diffusion process at large distances and times
implies that the smallk behaviour of〈G̃(k)〉 is given by

κe = κ0− d

dk2

∑
(k)|k=0 (18)

whereκe is the effective diffusivity. The Feynman rules for the diagrammatic expansion
are as follows:

(1) the wavevector is conserved at each vertex;
(2) each full line carries a factor 1/κ0k

2;
(3) the wavevector is integrated around closed loops with a factor d3q/(2π)3;
(4) each vertex, whose diagrammatic representation is shown in figure 1, carries a factor

−λ0q·p k·(q + p);
(5) each internal broken line carries a factor1̃(q);
(6) each diagram must be divided by the usual symmetry factor.

In what follows, we use the explicit spectrum

1̃(q) = (2π)3/2

k3
0

e−q
2/2k2

0 . (19)

The normalization is chosen so that〈(φ(x))2〉 = 1. In our numerical calculations, we set
k0 = 1.

There is no one-loop correction to the propagator. As mentioned before, this together
with the fact thatnew vertices are generated when correcting the primitive one makes it
extremely delicate to implement other perturbative schemes such as self-consistent or RG
methods. Therefore, we concentrate on a straightfoward perturbation theory calculation
which has to be carried out to at least four-loop order to get a sensible outcome. The
formal manipulations of which we make use are basically the same as those utilized in
[5–7] and we only elucidate the more elaborate steps and state the main results.
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Figure 2. Two-loop contribution to
∑
(k).
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Figure 3. Three-loop contribution to
∑
(k).

The two-loop contribution to
∑
(k) is associated with the diagram in figure 2. According

to the above Feynman rules it is

(2)∑
(k) = −1

2

λ2
0

κ0

∫
d3q

(2π)3
d3p

(2π)3
1̃(q)1̃(p)

(p · q)2k · (p+ q)(k − q − p) · (q + p)
(k − q − p)2 (20)

and it can be easily computed to O(k2) with the result

(2)∑
(k) = 1

2

λ2
0

κ0
k2. (21)

In order to encounter deviations from Gaussian behaviour we must calculate beyond
second order and consider the three-point correlator of the velocity field, that is, to include
the first non-zero odd power inλ0 in the perturbation expansion. The three-loop diagram
contributing to

∑
(k) is shown in figure 3 and yields

(3)∑
(k) = −λ

3
0

κ2
0

∫
d3q

(2π)3
d3p

(2π)3
d3t

(2π)3
1̃(q)1̃(p)1̃(t)q·p p·t q·t

k · (q + p)(k − q − p) · (t− p)(k − q − t) · (q + t)
(k − q − p)2(k − q − t)2 . (22)

The numerator can be rewritten using the identity

(k − q − t) · (−q − t) = (k − q − t)2− k · (k − q − t). (23)
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We then have

(3)∑
(k) = −λ

3
0

κ2
0

∫
d3q

(2π)3
d3p

(2π)3
d3t

(2π)3
1̃(q)1̃(p)1̃(t)q·p p·t q·t

k·(q + p)(k − q − p) · (p− t)
×
{

1

(k − q − p)2 −
k · (k − q − t)

(k − q − p)2(k − q − t)2
}
. (24)

The first term, which turns out to be the dominant one, can be performed analytically
whereas the second one, much smaller, has to be done numerically to O(k2). It is instructive
to explain in some detail how to compute the analytical contribution to

∑(3)
(k). In the

first term of equation (24), the term odd int integrates to zero and, moreover, it can be
symmetrized forp andq to yield the result

(3)∑
an

(k) = −1

2

λ3
0

κ2
0

∫
d3q

(2π)3
d3p

(2π)3
d3t

(2π)3
1̃(q)1̃(p)1̃(t)q·p p·t q·t

k · (q + p)(k − q − p) · (q + p)
(k − q − p)2 . (25)

Using again equation (23) (for vectorsp andq) leads to

(3)∑
an

(k) = 1

2

λ3
0

κ2
0

∫
d3q

(2π)3
d3p

(2π)3
d3t

(2π)3
1̃(q)1̃(p)1̃(t)q·p p·t q·t k·(q + p)

·
{

1− k · (k − q − p)
(k − q − p)2

}
. (26)

The first term in equation (26) integrates to zero. We need to evaluate the second term only
to O(k2). Because of the explicit factors ofk in the integrand we can setk = 0 everywhere
else to obtain

(3)∑
an

(k) = 1

2

λ3
0

κ2
0

∫
d3q

(2π)3
d3p

(2π)3
d3t

(2π)3
1̃(q)1̃(p)1̃(t)q·p p·t q·tk · (q + p)k · (q + p)

(q + p)2 .

(27)

This is easily evaluated as

(3)∑
an

(k) = 1

2

λ3
0

κ2
0

k2

[
1

3

∫
d3q

(2π)3
q21̃(q)

]3

= 1

2

λ3
0

κ2
0

k2. (28)

Combining the analytical and numerical pieces yields the following result

(3)∑
(k) = λ3

0

κ2
0

k2

(
1

2
+ 0.030 375

)
. (29)

This last contribution is the first of the odd power terms in the expansions that are
responsible for the asymmetry ofκe under change of sign of the couplingλ0. Its presence
is a direct confirmation of the non-Gaussian property of the statistics of the velocity field.
However, truncating the power series at O(λ3

0) causesκe to increase for larger negative
values ofλ0, as is shown in figure 5. This unphysical feature is obviously an artefact
of perturbation theory and can be circumvented by including the fouth-order term in the
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Figure 4. Four-loop contributions to
∑
(k).

perturbation expansion. The diagrams corresponding to this order are shown in figure 4 and
give the following contributions:

(4a)∑
(k) = 1

4

λ4
0

κ3
0

∫
d3q

(2π)3
d3q′

(2π)3
d3p

(2π)3
d3p′

(2π)3
1̃(q)1̃(q′)1̃(p)1̃(p′)(q · q′)2(p · p′)2

k · (p+ p′)(k − p− p′) · (q + q′)
(k − p− p′ − q − q′) · (p+ p′)(k − q − q′) · (q + q′)
(k − p− p′)2(k − p− p′ − q − q′)2(k − q − q′)2 (30)

(4b)∑
(k) = 1

4

λ4
0

κ3
0

∫
d3q

(2π)3
d3q′

(2π)3
d3p

(2π)3
d3p′

(2π)3
1̃(q)1̃(q′)1̃(p)1̃(p′)(q · q′)2(p · p′)2

k · (p+ p′)(k − p− p′) · (q + q′)
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Figure 5. κe versusλ0 assumingκ0 = 1. The simulation data are shown (◦) to be compared
with the prediction of two-loop (chain), three-loop (broken) and four-loop (full) perturbation
theory.

(k − p− p′ − q − q′) · (q + q′)(k − p− p′) · (p+ p′)
(k − p− p′)4(k − p− p′ − q − q′)2 (31)

(4c)∑
(k) = −λ

4
0

κ3
0

∫
d3q

(2π)3
d3q′

(2π)3
d3p

(2π)3
d3p′

(2π)3
1̃(q)1̃(q′)1̃(p)1̃(p′)q·q′ p·p′ p′·q p·q′

k · (p+ p′)(k − p− p′) · (q − p′)
(k − p− q) · (q′ − q)(k − p− q′) · (p+ q′)
(k − p− p′)2(k − p− q)2(k − p− q′)2 (32)

(4d)∑
(k) = −λ

4
0

κ3
0

∫
d3q

(2π)3
d3q′

(2π)3
d3p

(2π)3
d3p′

(2π)3
1̃(q)1̃(q′)1̃(p)1̃(p′)q·q′ p·p′ p′·q p·q′

k · (p+ p′)(k − p− p′) · (q − p′)
(k − p− q) · (q′ − p)(k − q − q′) · (q + q′)
(k − p− p′)2(k − p− q)2(k − q − q′)2 (33)

(4e)∑
(k) = λ4

0

κ3
0

∫
d3q

(2π)3
d3q′

(2π)3
d3p

(2π)3
d3p′

(2π)3
1̃(q)1̃(q′)1̃(p)1̃(p′)q·q′ p·p′ p′·q′ p·q

k · (p+ p′)(k − p− p′) · (q + q′)
(k − q − q′ − p− p′) · (q′ + p′)(k − q − p) · (q + p)
(k − p− p′)2(k − q − q′ − p− p′)2(k − q − p)2 . (34)
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The above expressions can be simplified using the same sort of manipulations as in the
three-loop case. The first two are calculated analytically to O(k2) with the result

(4,a+b)∑
(k) = −1

8

λ4
0

κ3
0

k2

[
1

3

∫
d3q

(2π)3
q21̃(q)

]4

= −1

8

λ4
0

κ3
0

k2. (35)

The remaining ones lead, again, to a dominant contribution that can be calculated analytically
plus smaller pieces which are evaluated numerically to yield

(4,c+d+e)∑
(k) = λ4

0

κ3
0

k2

(
1

2
− 0.06

)
. (36)

The outcome forκe to O(λ4
0) is then

κe = κ0

{
1− 1

2

λ2
0

κ2
0

− 0.530 375
λ3

0

κ3
0

− 0.315
λ4

0

κ4
0

}
. (37)

The results forκe at two, three and four loops are shown plotted in figure 5 for the range
−1.5 < λ0 < 1.5 andκ0 = 1. Clearly, the four-loop perturbative calculation is successful
in surmounting the difficulties of the three-loop case while encoding the deviations from
Gaussian behaviour. The latter, are translated into a fast decay ofκe for positive values of
λ0 whereas it decreases more slowly for the negative values.

3. Numerical simulation of drift and diffusivity

To simulate the evolution of the scalar fieldP(x, t) we integrate numerically the stochastic
equation for the evolution of a particle with pathx(t) given by equation (10). The resulting
probability distribution for the particle positionx(t) is thenP(x, t) with the initial condition
P(x, 0) = δ(x).

The discrete form of equation (10) suitable for numerical integration is

xn+1− xn = u(xn)1t + (2κ01t)
1/2ξn (38)

where ξn is a Gaussian random three-vector of zero mean and unit variance for each
component. This equation models equation (10) correctly to O(1t) but the details of a
third-order Runge–Kutta scheme correct to O(1t3) are given in [14]. We use this third-
order scheme in our numerical simulation.

The realizations of the random fieldφ(x) are constructed in the usual way [13–15]. We
set

φ(x) =
(

2

N

)1/2 N∑
n=1

cos(kn · x+ εn) (39)

where the vectorεn is distributed uniformly over the unit sphere and the wavevectorkn is
distributed according to the distribution

P(k) = 1

(2π)3/2
e−k

2/2. (40)

For N sufficiently large the central limit theorem guarantees thatφ(x) is Gaussian up to
O(1/N) corrections.
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The effective diffusivity is computed, for a realization of the velocity field, from the
ensemble of paths by

〈x(t) · x(t)〉paths= lim
M→∞

1

M

M∑
a=1

xa(t) · xa(t)

= 6κet +O(1) as t →∞. (41)

To measure the effective drift,λe, we add a constant drift term to equation (12). In
appropriate units, it is given by

u′ = λ0g (42)

whereg is a uniform gradient field. Assuming that the latter lies along thex-axis, for a
realization of the velocity field,λe is computed according to

〈x(t)〉paths= lim
M→∞

1

M

M∑
a=1

xa(t)

= λegt +O(1) as t →∞. (43)

In practice, the number of field realizations andM are finite but large enough to give an
estimate ofκe andλe with reasonable error. In addition the simulation must be carried to
values oft large enough to ensure that measurements are being performed in the asymptotic
regime controlled by the long-range or ‘renormalized’ parameters. This is tested by ensuring
that the estimates forκe andλe are independent of the range oft used to evaluate them,
within statistical errors. In our simulation we tracked the trajectories of 400 particles in
each of 1280 realizations of the velocity field, each of them containing 128 modes. The
simulation was run for a total of 8000 (32 000) time steps of length 0.025 (0.0125) for the
smaller (larger) absolute values of the bare couplingλ0. For larger values ofλ0 and because
of time limitations the number of paths followed was reduced to a minimum of a hundred.

The results from the perturbation theory calculation ofκe against results from the
simulation are shown in figure 5 for the range−1.5< λ0 < 1.5 and assumingκ0 = 1. The
simulation confirms the pronounced asymmetry ofκe as a function ofλ0, exhibiting a fast
(slow) decay for positive (negative) values ofλ0. The four-loop order results compare well
with the simulation outcome in the range−0.7 < λ0 < 0.7. As expected, the four-loop
perturbative calculation encodes the relevant qualitative features of the flow and is effective
in the region of small disorder as opposed to the two-loop and three-loop case.

In table 1 we show the measurements of bothκe andλe over a range of values of the
disorder parameter (again, we takeκ0 = 1). The results clearly show that the equality of
the two renormalized factors is well maintained throughout with only slight discrepancies
some cases due to systematic errors. For the higher values of the disorder parameter another
possible source of error is that the value of the drift parameter has become so large that
O(g2) effects are influencing the values of the measured quantities. Nevertheless, we are
confident that the simulation supports the conclusion that in gradient flow, irrespective of
the precise nature of the statistics of the velocity field, the drift and diffusivity parameters
are renormalized in the same way if we start from a situation where the corresponding
microscopic quantities are proportional. This result confirms the theoretical prediction
previously obtained in [10] using a theoretical approach developed for the continuum from
a method due to Derrida [1, 16, 17].
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Table 1. Measurements ofκe andλe for various values of the disorder parameterλ0.

λ0 g κe (λe/λ0)

−2.0 0.05 0.600 93(52) 0.6014(7)
−1.5 0.05 0.692 76(60) 0.6946(9)
−1.2 0.05 0.757 97(66) 0.7583(12)
−1.0 0.05 0.804 12(69) 0.8032(15)
−0.7 0.05 0.873 60(75) 0.8753(31)
−0.5 0.05 0.925 60(56) 0.9213(32)
−0.2 0.125 0.983 86(59) 0.9803(33)

0.2 0.125 0.976 32(59) 0.9790(33)
0.5 0.05 0.797 88(49) 0.7983(30)
0.7 0.05 0.547 44(52) 0.5458(25)
1.0 0.05 0.195 37(25) 0.1939(8)
1.2 0.05 0.089 79(15) 0.0895(5)
1.5 0.05 0.030 59(7) 0.0296(3)
2.0 0.05 0.007 90(3) 0.0070(1)

4. Conclusions

In this paper we have studied the motion of a neutral molecule in a random gradient flow.
The suggested physical mechanism giving rise to the local drift involves the interaction of
the local electric field (presumed to have Gaussian statistics) with the field-induced dipole
moment of the molecule. The resulting drift field therefore doesnot have Gaussian statistics.
That such a physically plausible model can give rise, in a natural way, to a drift field with
non-Gaussian statistics, is itself interesting.

The increased complexity of the model is no barrier to the formulation of a perturbative
calculation of its Green functions and effective parameters. The non-Gaussian character of
the drift field statistics shows up first at three-loop order. It results in a contribution to
the effective diffusivity that is not symmetric under a change of sign of the coupling. This
asymmetry is very clear in both the perturbation theory and numerical results exhibited in
figure 5. The same figure also exhibits the results of the numerical simulation. It shows that
the inclusion of the four-loop terms allows the perturbation series to give a reasonably good
account of the effective diffusivity for the coupling parameter in the range−0.7< λ0 < 0.7.

The complexity of the non-Gaussian model, however, has so far prevented, a satisfactory
formulation of the kinds of self-consistent perturbative calculation or renormalization group
calculation that were rather successful for the Gaussian model [2–6]. In both cases the
problem centres round the new types of vertices, not present in the original perturbation
theory scheme, that areinduced by the loop contributions of perturbation theory. The
formulation of effective calculational schemes of this kind remains an aim of great interest
since, as is clear from figure 5, low-order perturbation theory is inadequate for situations of
large disorder. Further investigations are in progress.

In addition to the effective diffusivity the effective drift parameter, which controls
the response of the molecules to an externally applied constant gradient field, is also a
significant physical quantity. The success of the renormalization group calculation in the
Gaussian model was in part due to the fact that it respected the Einstein relation, namely that
the effective diffusivity and drift parameter are renormalized by the same factor from their
molecular values. The Einstein relation was also demonstrated in low-order perturbation
theory. In fact the Einstein relation was later shown to hold quite generally, independently of
the statistical properties of the random medium, provided the molecular drift and diffusivity
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tensors were proportional to one another [10]: the Gaussian character of the model is not
relevant. It is therefore important that we have been able to give numerical confirmation
(see table 1) of the validity of the Einstein relation between effective drift and diffusivity
in the non-Gaussian model investigated in this paper.

The introduction of directional effects into the drift and diffusivity as well as the statistics
of the drift field, are further problems of great interest but considerably increased complexity.
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